Volume mesh generation using a level set method

Algiane Froehly ${ }^{1}$, Charles Dapogny ${ }^{2}$, Cécile Dobrzynski3, Pascal Frey ${ }^{4}$

- Target: automatic mesh generation from an arbitrary surface (non-conforming, analytical...) for computational fluid dynamics, stress computation or visualization

Steps 1 \& 2: Computation of the signed distance function to a discrete contour on an arbitrary tetrahedral mesh and Isotropic level-set adaptation (few iterations of this $\mathbf{2}$ steps)

Signed distance isosurfaces on the last mesh (after 4 iter. of adaptation) mshdist software

Last adapted mesh (4 ${ }^{\text {th }}$ iter)
metric computation: mshmet software mesh adaptation: Mmg platform

4th iteration (1 h 20)

Input mesh
\#Nodes 9 m
\#Elements 51m
Output mesh
\#Nodes 26 m
\#Elements 153m
Qualities*:

- Wrst. 0.2
- Stats. $99 \%>0.5$

Lengths***:

- Size min. 0.0009
- Ratio max: 2.
- Metric agreement: 0.7 < $95 \%<1.4$

Formulae

*Tetra. quality:
$Q=\alpha_{1} \frac{V}{\overline{l^{3}}}$
**Tria. quality:
$Q_{s}=\alpha_{2} \frac{S}{\overline{l^{2}}}$
*** Edge length: $l_{A B}=\frac{\|A B\|}{h_{a}-h_{b}} \ln \left(\frac{h_{b}}{h_{a}}\right)$
α : normalization factor
V : tetrahedron volume
\underline{S} : triangle area
\bar{l} : mean edge length
h : prescribed size

Conclusion

Advantages of the method:

- Genericity: a computational mesh of a domain can be generated from the datum of its distance function only (which can be obtained from an unorganized point cloud, a non-conforming surface...)
- We obtain a volume mesh of the inside and the outside of the discretized isovalue. Both may be used for various applications.

